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A Lyapunov function for the phase-locked state of the Kuramoto model of non- 
linearly coupled oscillators is presented. It is also valid for finite-range interac- 
tions and allows the introduction of thermodynamic formalism such as ground 
states and universality classes. For the Kuramoto model, a minimum of the 
Lyapunov function corresponds to a ground state of a system with frustration: 
the interaction between the oscillators, XY spins, is ferromagnetic, whereas the 
random frequencies induce random fields which try to break the ferromagnetic 
order, i.e., global phase locking. The ensuing arguments imply asymptotic 
stability of the phase-locked state (up to degeneracy) and hold for any proba- 
bility distribution of the frequencies. Special attention is given to discrete 
distribution functions. We argue that in this case a perfect locking on each of 
the sublattices which correspond to the frequencies results, but that a partial 
locking of some but not all sublattices is not to be expected. The order param- 
eter of the phase-locked state is shown to have a strictly positive lower bound 
(r~> 1/2), so that a continuous transition to a nonlocked state with vanishing 
order parameter is to be excluded. 

KEY WORDS: Nonlinear oscillator; phase locking; Lyapunov function; 
asymptotic stability; phase transition; collective phenomena; thermodynamic 
formalism; order parameter. 

1. I N T R O D U C T I O N  

V a n  de r  Po l ' s  de sc r ip t i on  o f  f r e q u e n c y  l ock ing  a) has  a r o u s e d  a l as t ing  

t heo re t i c a l  in te res t  in all k inds  o f  l o c k i n g  p h e n o m e n a  tha t  occu r  in 

n o n l i n e a r  Oscillators.  O r i g i n a l l y ,  a s ingle o r  on ly  a few osc i l l a to r s  were  

i n v o l v e d ;  see in p a r t i c u l a r  v a n  de r  Po l ' s  s emina l  w o r k  on  an  L C  ci rcui t  
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with triode and forcing term and its followup. The interest in the collective 
behavior of a large assembly of nonlinear oscillators is more recent. It has 
been stimulated greatly by a model proposed by Kuramoto, (~s) who 
assumed N oscillators coupled "all-to-all" and described by a phase ~bi, 
1 ~< i ~< N, with 

K u 
~i =coi -- Nj~'~I-= sin(~b/- ~bj) (1) 

Here q~ = d(~/dt, K>~ 0, and the frequencies ~0 i are independent, identically 
distributed random variables. The underlying probability measure on the 
reals is denoted by/t. In contrast to an extensive part of the existing 
literature, but in agreement with practical requirements, its support is 
supposed to be contained in a bounded interval. 

The Kuramoto model has been studied extensively during recent years. 
We refer in particular to the beautiful work of Ermentrout and KopeU (6 8) 
and Strogatz, Mirollo, and Matthews. (9 13) There appears to exist a critical 
Kc such that for K > Kc the system is in a phase-locked state characterized 
by ~g = ~ for all i =  1 ..... N, whereas no such state exists for K <  Kc. Instead, 
one then encounters a partially coherent state or, as we will see below, a 
state which is not coherent at all. 

Though the model (1)looks quite simple, appearances are deceiving. 
Here we concentrate on phase locking and exhibit a Lyapunov function Jr .  
The phase-locked state has long been known, ~2-13) but until now stability 
proofs, if any, have been hard to obtain. We show that a phase-locked state 
is a minimum of ovf and thus (quite) unique and (asymptotically) stable. 
Furthermore, we are able to offer a physical interpretation of this state and 
its stability. 

Since the existence of a Lyapunov function greatly simplifies the math- 
ematics of a stability analysis, we have made some effort to keep the paper 
self-contained. Moreover, we focus ondiscrete distributions of the coi. They 
have hardly been considered so far and give rise to interesting physics. We 
would like to stress, however, that the validity of our analysis does not 
depend in any way whatsoever on the probability distribution being dis- 
crete. This is due to the underlying mathematical mechanism: the strong 
law of large numbers, ~t4) which is valid for any probability distribution. 

In the following sections we introduce our Lyapunov function ~ ,  
determine the phase-locked state as its minimum, and study the associated 
fixed-point equations. The Lyapunov function is not specific to the 
Kuramoto model, which is of mean-field or infinite-range type. It holds for 
any model with symmetric interactions of finite instead of infinite range. For 
the Kuramoto model, the Lyapunov function J f  represents the energy of 
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an X Y  ferromagnet of strength K in a random field induced by-the random 
distribution of the frequencies coi. As such, the system is frustrated in that 
the X Y  ferromagnet likes to have all spins parallel, i.e., all ~b~ equal and 
thus perfectly phase locked, whereas the random field ( co i - ( co ) )  tries to 
break the ferromagnetic order. As K decreases, the model exhibits a phase 
transition at Kc: For K >  Kc the ferromagnet wins and the system is totally 
phase locked, whereas for K < Kc the random field takes over. We estimate 
both Kc and the range of the order parameter r that describes the macro- 
scopic extent of the phase locking. We study several examples, face the 
question of what happens if we are given a discrete frequency distribution 
and some but not all of the oscillators can lock, and finally discuss the 
salient differences between the present, more general type of model and the 
"generic" one with absolutely continuous, symmetric distributions such as 
the Gaussian and the Lorentzian. (2-5'7 13) It will turn out that the latter 
type of model does not behave in a truly generic way, since the partial 
locking, (3'~2) which shows up for K in an open interval just below Kc, 
is absent in models with a discrete distribution. In other words, different 
universality classes exist. We also touch upon the relevance of locking 
in the present model to the question of what coherent oscillations in the 
cortex are good for, a hotly debated topic in theoretical neurobiology. 

2. L Y A P U N O V  FUNCTION 

The dynamics (1) allows an interesting sum rule. We add the ~bi, divide 
by N, and find 

dt N ' qb~ = U -~ coi - ~ 5 Z s i n ( ~ b , - ~ b j )  (2) 
i = 1  i = 1  t ,J  

Since the sine is an odd function, the second sum on the right vanishes 
(interchange i and j)  and we are left with 

dt N - '  (~i ~ coi-  (~o) (3) 
i = 1  i = 1  

As N--* oo the quantity (o))  is a nonrandom number and equals the mean 
d#(co)co by the strong .law of large numbers. (14) If, then, we have phase 

locking defined by ~bi=~b, 1 ~< i<~N, we are bound to find ~ =  (co). 
We now introduce new variables ~o e defined by 

~0 i = ~b i - s (4) 

where s is at our disposal. 
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In terms of the (p~ the equations of motion (1) reappear in the form 

K 
(hi= (coi- s  sin(q~i- ~oj) (5) 

J 

Suppose for a moment that there were no randomness, so that cog = co for 
l< . i< .N .  If we choose s then we arrive at a simple gradient 
dynamics, (s) 

K Oaff 
~ b ~ = - - ~  sin(~0,- q)j) = , , _  3(Pi ~ = - V a f f  (6) 

J 

with 

z,J t ,J  

is the Hamiltonian of an XY ferromagnet. The spins S~ are unit vectors 
and the dynamics (6) is a gradient dynamics with ~'~ as Lyapunov 
function, viz. 

= - l l w l l 2 . < 0  

The inequality in (8) is strict, unless we reach a minimum of ~ ,  where 
V~'/f = 0. Since Se" Sj ~< 1, a minimum of (7) is reached as soon as S;. Sj = 1 
for all i and j, i.e., when all spins are parallel. Therefore, asymptotically 
~o~(t) --+ q~o for all i and we obtain a perfect phase locking. In terms of the 
original variables we have ~b;(t) = cot + q~oo, 1 ~< i~< N. 

Is the minimum for a+f unique? No, not quite. Due to (7) we can write 

out ~ = - �89 N -~ S, (9) 
i = l  

which is evidently invariant under a uniform rotation of all the S~ or, in 
terms of the q~;s, under the transformation (o~ --+ ~p; + u, 1 ~< i ~ N. As will be 
shown in Section 5, all eigenvalues of the stability matrix are strictly 
negative, except for one, which vanishes. In this way the rotational 
invariance of (9) is taken care of. A minimum is stable and, orthogonally 
to this direction, asymptotically stable. (~s) We now turn to the case of a 
nondegenerate distribution of the co;. 

Also for (5) a Lyapunov function exists. We can, and will, define 
(o~mod 2n. Equation (5) tells us quite explicitly that there is no harm in 
doing so. Then 

K 
= cos( 0;- (co - D) (10) 

t ,J i 
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induces a gradient dynamics for (5). Hence ~,~ is a Lyapunov function and 
the dynamics (5) converges to a minimum of Yg, if it exists. One might 
object that restricting r rood 2~ to [ - ~ ,  ~] is an artefact. If we start far 
away from a minimum, some of the q~e may hit the border and jump from 
- ~  to 7z or conversely. That does change the second term on the right in 
(10). No jumping occurs, however, if a minimum of ~ can be localized in 
the interior of [ - ~ ,  7z] u. In a suitable neighborhood, the system then 
converges to the minimum and we even have asymptotic stability. It is also 
plain that the idea which has led us to (10) is equally valid if the mean- 
field interaction K/2N is replaced by a finite-range interaction Jig" Since the 
modifications of the arguments below are straightforward, they will not be 
spelled out here. 

An extremum of ~ is characterized by V ~  = 0, i.e., by the fixed-point 
equation 

K 
0 = ( c o i -  12) - ~ ~' s in(q~- ~0j) (11) 

J 
for 1 ~< i ~< N. Summing over i, we obtain 

N 
" Q = N - 1  2 0 ) i =  ( 6 0 )  (12) 

i= l  

This determines O and is consistent with the observation following the sum 
rule (3). For a finite-range interaction, exactly the same argument holds, 
including the sum rule, if the Jij are symmetric, i.e., J~j = Jji- We now 
continue with the Kuramoto model. 

Let us denote the difference between a~i and (2= (co) by A(co)= 
o9 i -  (co). To solve (11), viz. 

K 
A(co~) = ~ E sin((p~- ~oj) 

J 

we introduce 
through (2-4) 

an order parameter r and an 

(13) 

associated variable 

(14) 
N 

re i4~ = N -  1 Z ei% 
j = l  

Since the right-hand side is a convex combination of complex numbers in 
the convex unit disk, r exp(i~b) is in the unit disk itself and 0 ~< r ~< 1. Using 
(14) and s in(x)= [exp( ix ) -  exp(- ix) ] /2 i ,  we rewrite (6) 

K N [ ei(~i-q'j) e -  i(u'/- ~~ (coi)- 

K [ei(~,_~,) e i(tpi_~p)] 
= A((Di) --  2i  
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so that 

~, = d(co~) -- Kr sin(rp,- r  (15) 

This equation explicitly tells us that ~b i is governed by both A(cog) and the 
collective variables r and ~k. The fixed-point equation (11) now assumes the 
simple form 

A(coi) = Kr sin(cPi-- r  (16) 

It is basic to all that follows. 
For the sake of simplicity we suppose that the co; assume only finitely 

many values {co} with probabilities {p(co)}. We then can introduce (16) 
sublatttices I(co) = {i; coi= co} consisting of all i with coi= co. By the strong 
low of large numbers (14) the size 11(o9)1 of the sublattice 1(o9) is given by 
[I(co)l ,,~p(co)N as N ~  oo. 

On  a particular sublattice /(co) all A(coi) have the same value A(co). 
According to (16), all ~oi also assume the very same value ~o(co) given by 

r - r = arcsin( A(co )/Kr) (17) 

We will verify shortly that the order parameter r is such that IA(co)/Krl <<. 1 
and that arcsin(0) should be 0 and not n. By (14) and (17) we have 

p ( c o ) e x p ~ i [ r  r F  / \q~ (18) rei~ = 
{o,} l L  \ Kr J J J  

and, since r >~ 0, 

p(co) cos/arcsin [A(co)/ /F/ \q  (19) r~-~ 
{o~} L \ Kr ]J 

If A(co)=0, then the system is in a perfectly locked state (r162 
associated with an energy minimum of the X Y  ferromagnet and r = 
Z{o~l P(co)= 1 is a stable solution. That is, arcsin(0) has to vanish, and 

F . fA(co)'~7 r _ ,  fA(CO)'~27 u2 
cos = L ' -  J Larcs,n )J (20) 

Combining this with (19), we arrive at the fixed-point equation 

r=  ~, p ( c o ) [ 1 - ( A ( c ~  :/z (21) 
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By construction, a solution r is bound to be such that [A(~o)/Krl ~ 1. For 
A(~o)-0 (or K =  oe) Eq. (21) has the solution r =  1. For [A(m)l small (or 
K large but finite) we then also obtain a solution by the implicit function 
theorem. 

For given A(co) one may wonder how small K can be chosen (K~> Kc) 
and what is the nature of the transition at Kc where r ceases to exist as a 
solution of (21). Putting x =  (Kr)2~ [0, K2], we can rewrite (21) in the 
form 

K - i x  = E p((D)[X -- A2((D)] 1/2 ~ O(X) (22) 
Co,} 

where ~(x) is defined for x>~AZ=sup~,A2(o~). On its domain, O is a 
convex combination of concave functions and thus concave itself. More- 
over, Eq. (22) tells us that, as we decrease K, there exists a critical Kc such 
that we find a (stable) solution for K>Kc and no solution for K<Kc. 
Hence there exists no global phase locking for K < Kc. Some examples can 
be found in Section 4. The critical Ke itself can be obtained from (22), 

Kc  1= sup ~ p(oo)[x-A2(co)]l/2x i (23) 

The restriction x > A 2 is irrelevant for a discrete distribution, since in that 
case the function # is strictly concave and such that the maximum in (23) 
is assumed for x > A 2. We refer to Ermentrout (6/for an elegant discussion 
of a simpler case, viz., a continuous symmetric distribution. 

Stepping back for an overview, we now want to interpret the 
Lyapunov function (10) as a Hamiltonian so that a minimum of 
represents a ground state of a physical spin system. The first term on the 
right is the energy of an X Y  ferromagnet of mean-field type with coupling 
strength K. This term aims at keeping all spins parallel. The second term 
represents a kind of random field with strength (o9 i -  (co)) and mean 
( c o - ( e ) ) )  =0.  To minimize the energy, the second term wants to make 
the cpi with co i -  ( c o ) >  0 positive and those with ~oi- ( c o ) <  0 negative-- 
as positive and negative as possible. So the two terms counteract each 
other. There is frustration. For K large the ferromagnet wins in that the 
system is phase locked, the sublattices are homogeneous, and, as K 
decreases, their phases q~(co) rotate away slowly from a single fixed 
direction, a minimal energy configuration of the X Y  ferromagnet. This 
is brought out clearly by (17). The minimum of ~ performs a kind of 
"unfolding" in the phase space [ - n ,  n]N--like a multiwinged butterfly, the 
phases being the wings. Herewith the stability of the phase-locked state 
obtains a natural explanation. As K decreases further and reaches Kc, the 
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K=0.50 

7 
r 

K c : 1 . 0  

?. r 

n = - K / Z * c o ~ ( ~ , - ~ 2 )  + ( r  

:it 
0 1 2 3 4 5 6 

K= 0.0 
0.5 
l.O=Kc 
1.5 
2.0 
3.0 
4.0 

14=9 N 

Fig. 1. Left column. For  N =  2, ~ has been plotted as a function of ~o~ and ~0 2 on [0, 2~z] • 
[0, 2~] for various values of K. The frequencies are co1--I2= - 1 / 2  and c o 2 - I 2 =  1/2. The 
mot ion of the system is a gradient dynamics which evolves in a plane perpendicular to the line 
go I = tp2. The intersection with ~ contains the trajectory. For  K >  Kc, two ripples occur in the 
surface and the system gets phase locked in the min imum of one of them. An intersection with 
the upper ripple (right-hand corner, with 0~< q~l-q~2 ~<2n) has been plotted in the right 
column. The dashed line on the r ight  going downward indicates the location of the minima 
as K varies. 
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random field takes over. No solution to (16) and no global phase locking 
exist beyond Kc anymore. 

It may be advantageous to picture the transition at K o. To this end we 
take N =  2 in (10), with co I - ( 2  = - 1 / 2  and (D 2 --~r~ = 1/2, and use the third 
dimension to plot J r ;  see Fig. 1. 3r is a function of q~l-  ~02 and thus is 
rotationally invariant. The dynamically relevant direction is orthogonal 
to q~l-q~2 =const .  Since (8) and (10) induce a gradient dynamics, only 
the latter direction is relevant. For  K >  Ko = 1, the Lyapunov function has 
ripples and the system always gets stuck in a minimum of 

K l 
"~- - - - 2  COS(@1 --  q)2) @ ~ ((,01 - -  q)2) 

For  K <  Kc, there is no ripple and, hence, no locking. In the following 
three sections we will estimate Kc and the order parameter r, consider some 
examples, and study the stability of the phase-locked state in more detail. 

3. E S T I M A T I N G  C R I T I C A L I T Y  

One of the main problems is estimating rc and Kc, the critical values 
of r and K, in the limit N --* oo. For  x large, we can estimate the right-hand 
side of (23) by modifying an argument of Ermentrout's. r We do this for 
a general probability measure # and write Kc=supx  O(x), where x~>A 2 
and 

x -1 f d#(co)[x - A 2 ( ( . o ) ]  1/2 = x -  l t , q (x )  (24) O(x) 

Computing the derivative 0 ' ,  we find 

2A 2(6o) - x (25) 
O'(x) = I 

Hence O'(x) < 0 and O(x) is decreasing for x = (Kr) 2 beyond 2A 2. Thus we 
obtain the estimate 

A m ~ (Kr)c <<. ~ ZJm (26) 

We now turn to lower bounds for K c and r separately. 
Since the square root is a concave function, we apply Jensen's 

inequality (17) to (22) and find 

{ f  ))1/2 K-lx~ d#(co) [ x - A 2 ( c o ) ] }  = [x - -  <a2(co))]  1/2 (27) 
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and after squaring this, 

K - 2 X  2 --  x -'}- (z12((.0) ) ~ 0 (28) 

The condition (28) can be realized only if the discriminant is positive, i.e., 
K2~>4(32(co)).  Thus we find 

Kc ~> 2(A2( fo ) )1/2 (29) 

We cannot do better, since the inequality (29) becomes an equality in case 
P(ml) = P(~%)= 1/2, as we will see shortly. 

To derive a lower bound for r we start with (26), viz., Am <<. (Kr)c. 
Though this inequality does not look optimal, it actually is. In the next 
section we will see that it is saturated by the uniform distribution. If so, we 
now need a lower bound for Kc 1. To this end we combine (23) and (26), 
restrict x to the interval [A2m, 232] ,  and evaluate the right-hand side of 
(23) at x =  2A 2 so as to get 

K 7 1 ~  > ~ P(CO)[2 A2-32(og)]l/2/z32m 
{o,} 

= z [2 {o~} \ Zlm / J /> (2ZJm) 1 (30) 

Thus we arrive at the extremely simple inequality 

r c > A m > *  1 (31) 
Kc ~ 2  

It tells us explicitly that a continuous transition from the phase-locked to 
a nonlocked state with vanishing r is to be excluded. Note that in obtaining 
(31) we have not made any special assumption concerning the probability 
distribution of the frequencies o9i. Neither do we assert that r must vanish 
for K <  K~. There is just no global phase locking. 

The inequality (31) also provides us with an upper bound for Kc in 
that Kc~2zJ m. In case p(m1)=p(o92)=l/2, this upper bound and the 
lower bound (29) coincide, so that the upper bound is optimal as well. 

4. EXAMPLES 

The simplest nontrivial distribution is the one with two frequencies 
c01 and ~02>c01 and probabilities p(r p and p ( ~ o l ) = l - p .  Then 
3(~01) = -(co 2 - c01)p ~< 0 and zl(co2) = (~02 - 091)(1 - p )  ~> 0, while 

(A2(~o)) = p(1 -p)(c.o 2 -- 091 )2 (32) 
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For p - - 1 / 2  we get 

( 3 2 ( 0 ) ) )  1/2 _ i t  . . . .  
- ~ , 2  0)1)  = IA(0))I  =3m (33) 

The fixed-point equation (22) takes the form 

K - l x = ( l - p ) { x -  [p(0)2-0)l)]2}~/2+p{x -[-(1-p)(r 1/2 (34) 

with x =  (Kr)Z>~A~ and Am=max{(0)2-c~ l )p ,  (o32-0)1) (1 -p)} .  What- 
ever p, there is a remarkably simple expression for the phase difference, 

q~(0)2) - q~(0)1) = arcsin [(0)2 - 0)1)/K] ( 3 5 )  

which can be proven, e.g., by combining an addition formula for two 
arcsines with (21). 

We now return to the case p = 1/2. Then (34) can be squared so as to 
give 

K - 2 x  2 - x -J- [-1(0) 2 - 0)1 ) ] 2  ~__ 0 (36) 

We get a positive solution to (36) as long as its discriminant is positive, i.e., 

K>~Kc= 10)2- 0)11 (37) 

At K~ we find x(Kc)= 1 2 5K c so that r(Kc)= �89 Taking into account both 
(37) and (33), one easily verifies that inequality (29) has been turned into 
an equality; in short, it is optimal. Combining (35) and (37), we get that 
in this particular case and at K~ 

7~ 
(0 max -- q~min = arcsin (1) = ~ (38 ) 

The limit p ~ 0 can also be handled analytically. Here A(0)2) ~> fA(0)I)[ 
and (34) may be approximated by 

K - i x  • (1 - p ) % ~ . - ~  p [ - x -  (0) 2 - 0 ) 1 ) 2 ]  1/2 (39) 

with x~> (0)2-0)1) 2. Figure 2 shows that in this limit, K c=  i0)2-0)1l once 
more, so that rc = 1, as is to be expected. We explicitly see that the side 
condition x>>.A2m is harmless. Equation (35) implies that here, too, (38) 
holds. Note that the limit p--* 0 is different from the case p = 0. The latter 
has perfect locking whatever K. Furthermore, the above results for p = 0, 
1/2, and 1 [due to the symmetry p ~ ( 1 - p ) ]  suggest that (37) and (38) 
hold for any p. That  is indeed the case. 
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Proposition. For  the b imoda l  distr ibution with (D2>(D 1 and 
p(o92) = p we have Kc = ~ 2 -  ~ol, whatever  p. Moreover ,  at Kc, the phases 
of the two sublattices belonging to 0) 1 and ~2 are or thogonal ,  i.e., (38) 
holds. 

Proof. Turning  to (22), we note that  in the present  case O(x) starts 
with a square- root  singularity, is monotonica l ly  increasing and strictly 
concave for x >~ A~, that  the side condi t ion is irrelevant when we apply 
(23), and that  the m a x i m u m  is u n i q u e - - a s  is exemplified by Fig. 2. Put t ing 
the derivative of the r ight -hand side of  (23) equal  to zero, we state as a fair 
accompli that  the unique x(p) maximizing (23) equals 

x ( p )  = I-p2 _]_ (1 - - p ) 2 " ] ( O )  2 - -  (2)1) 2 

A little a lgebra then suffices to verify K c =  ~o2-  COl and, taking advantage  
of (35), we find (38). | 

Another  interesting soluble case has ~o1<co2<~o3 and ( ~ 2 - o 9 1 ) =  
(~3 - ~o2) = A while P ( ~ I )  = p__(~%) = P ~< 1/2. In part icular ,  as A --. ~ ,  one 
finds Kc "~ p-~A and r c =  p x /2  so that,  at  Kc, the relative phases are - re/4, 
0, and (38) holds again. This suggests that  (38) might  be generally true. 
O u r  final example  shows that  this is not  the case. 

2.0 , , , , , , 

0.85 [ ' 

1.5 
0.83 I J ~ - 

0.81 

1.0 

0.5 

0.0 v- , , r ~ , 
0.0 0.5 ,52 1.0 1.5 2,0 

m X 

Fig. 2. Graphica l  so lu t ion  to the f ixed-point  equa t ion  (34) with ~2 - c o l  = 1. The  lower curve 
and  the  vertical dashed  line represent  the case p =0 .1 .  T he  inset shows  why here the side con-  
di t ion x ~> A ~ is irrelevant. Note that the limit p--* 0, i.e., the square root with x/> (o92 -~o 1 )2, 
differs from the case p = 0, viz., the square root with x >~ 0. 
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The uniform distribution on [ -  1, 1 ] is a favorite of the literature. Its 
fixed-point equation is (x ~> Am = 1) 

f 
l 

1 1 ( 4 0 )  K x = ~ dco ( X  - -  ( / )2 )1 /2  
1 

The integral can be done exactly and 

K21 = sup �89 l ( x -  1) 1/2 + arcsin(1/xl/2)] 
x>~ l  

(41) 

One either applies an argument of Ermentrout's (6) to (40) or checks explicitly 
that the right-hand side of (41) assumes its maximum at x = (Kr) z = 1, so 
that Kc =4/~.  In addition, Eq. (17) implies q)max- @rain = g" 

5. STABILITY 

Before embarking on a more detailed stability analysis it is nice to see 
what can be said beforehand. To this end, we return to the X Y  ferromagnet 
(7). Due to the gradient dynamics (6), the system relaxes to a minimum of 

which is characterized by ~o~ = ~0~ for 1 ~< i ~< N. Is it unique? No, as we 
have seen, it is not. The ground state of (7) is rotationally invariant and it 
remains so if we add the random field to ~ so as to arrive at (10). The 
reason is that a uniform rotation through ~ produces an extra term 

N 

E (co,- <co>)=o 
i=1 

which vanishes by the very definition (3) of (co).  Thus we expect a 
permanent eigenvalue zero belonging to the eigenvector (1, 1 ..... 1) of the 
Jacobian matrix D at a fixed point of the equations of motion 

K N 

~bi = A(co,.) - ~s~l.= sin(q)+- ~0+) (42) 

Doing the calculation explicitly and noting that there is no harm in dropping 
the prefactor K/N, we find cos(~oi- (pj) for i C j  and - Z s ( ~ / ) c o s ( q ) i -  (p j) 
for i = j. For  the X Y  ferromagnet without random field, all ((Pi - q)j) vanish 
and D = - N ~  + 1, where ~ is the unit matrix and 1 is the ma.trix with all 
elements equal to 1. The matrix 1 has a single, nondegenerate eigenvalue N 
with eigenvector (1, 1 ..... 1) corresponding to a uniform rotation of the 
original system, and ( N - 1 )  eigenvalues 0. Thus D has a single eigen- 
value 0, as predicted, and all other eigenvalues equal - N .  In passing we 
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note that, whatever the fixed point, (1, 1 ..... 1) is an eigenvector of 9 with 
eigenvalue zero. 

As the IA(oi)l increase, the phases q~(oi)-O "unfold" continuously; 
cf. (16). Since the matrix elements of 9 are continuous functions of the 
A(o~), so are its eigenvalues (18) and, consequently, the fixed point originat- 
ing from r = 1 at K =  oo remains stable for quite a while. In fact, as long 
as the cos(q~i- (&) remain positive, i.e., q)max - -  q)min ~'~ re/2, we can apply the 
Gershgorin disk theorem (19) so as to conclude that the eigenvalues of • are 
negative. Figuring out what the spectrum of D exactly looks like is quite 
hairy. To prove that the fixed point originating from r = 1 remains stable 
down to K~., it is simpler, and also more physical, to note that a loss of 
stability means that an eigenvalue of D moves through zero at a positive 
rate. Hence (2~ a new fixed point has to bifurcate from the old one. Since 
the function ,9 in (22) is concave and increasing, this does not happen. So 
we are done. 

It may be clarifying to consider a simple example, viz., the case 
p(o l )  = p(o2) = 1/2. The fixed-point equation (36) has two roots which for 
small e)2-o)1 (or large K) lead to two values for the order parameter r, 

1 ((D2 - -  (.O 1"~ 2 0 2  - -  (.01 
r + = l - ~ _  ~- j ,  r _ -  2 ~  (43) 

The phases of the states corresponding to r + and r _ have been indicated in 
Fig. 3. They allow a simple interpretation. In the limit (c%-  COl)/K--+ O, the 
first corresponds to all spins parallel. It is a stable ground state. The second 
has the spins on both I (o l )  and/(o)2) parallel, but ~0(o2)-q)(ol)~ re, i.e., 
the sublattices have their spins antiparallel and the total magnetization 
vanishes. This configuration corresponds to an energy maximum of the X Y  
ferromagnet. It is a stationary point (V~X~--0) but evidently an unstable 
one; cf. (9), As (O2--Ol)/K increases, (/1(O2)--(/)(O1) increases for the 
stable configuration and decreases for the unstable one. The phases of the 
stable and the unstable configurations meet each other--at  least in this 
case--at ~o = ~z/4 and q)=-re /4 ,  respectively. That is, they meet at Kc. 
As they merge, the phase-locked state disappears. We now reinterpret this 
in terms of the Jacobian D at a stable fixed point. 

We take N even. As N-+ 0% we have at a fixed point 

~ =  --~- (1 +~) + |  (44) 

a~vhere e=cos[~o(o2)-q~(ol ) ]  and 1 is an N/2xN/2  matrix with all 
elements equal to one. Furthermore, | denotes a direct or Kronecker 
product. (21) If ~r represents the set of eigenvalues (the spectrum), we 
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Fig. 3. For large K, a system with p(o~l)= c% = 1/2 gives rise to two stationary points of the 
Lyapunov function ~f with order parameter values r+ and r . The former corresponds to a 
minimum of ~ and is stable, whereas the latter corresponds to a maximum of ~r and is 
unstable. The phases are given by the angles with the positive horizontal axis and r e is a con- 
vex combination of the r values of the two sublattices with weight 1/2. So r+ ~ 1 and r_ ~0 
and the two sublattices have their block spins nearly parallel or antiparallel. As K decreases, 
the two upper and lower phases approach each other and they meet at Kc at angles q)m,x = n/4 
and r = --n/4. In other words, at Kc they merge, @max - -  q I m i n  = ~/2, and rc = �89 

can write ~r(A |  a ( A ) a ( B )  for the eigenvalues and  VA | for the 
eigenvectors.  (21) I t  is then  easy to  verify tha t  

a(D)={-(l +~) N;(N-2)-folddegenerate}w {O}u {-eN} (45) 

As ~--* 0, only  the last  two are  relevant.  They belong to the eigenvectors  
(1 ..... 1, 1 ..... 1) and  (1,..., 1 , -  1 , . . . , -  1). The  la t te r  d i rec t ion  makes  the 
phase - locked  state unstable  at  Kc. I t s  physical  in t e rp re ta t ion  is quite 

intuit ive.  

6. S O M E  B U T  N O T  ALL O S C I L L A T O R S  C A N  LOCK 

Phase  locking  is appa ren t ly  the rule if the co i do  no t  scat ter  t oo  much.  
A na tu ra l  ques t ion then is: wha t  happens  when some but  not  all of the 
osci l la tors  can  lock? F o r  example ,  for K = 2 . 2 8 1 5  we take  co1= 1.5, 
co2 = 2.0, while r = 4.0 and  the p(e)i)  all equal  1/3. By the f ixed-point  
equa t ion  (22) we ob t a in  K < K c = 2 . 2 8 1 6 ,  which slightly exceeds K. The  

8 2 2 / 7 2 / 1 - 2 - 1 1  
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sublattices I((.O1) and 1(17.02) can lock, at least in principle, whereas I(O)3) has 
to stay apart. If so, one might think that the frequency common to the 
sublattices I(0)1) and I(o92) would be 1.75. This is not true, due to the 
exact sum rule (3). Neither do they lock exactly, nor is their "common 
frequency" the appropriately weighted mean of the sublattice frequencies; 
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Fig. 4. (a, b) Solution of (1) for N =  6 and K =  1 with (0~ = (/)2 = 2, (03 = (3)4 = 1.5, and 095 = 
(06 =4.  The initial condition is the homogeneous distribution ~b4(0)= 1.5 > ~b3(0)> ~b2(0)> 
~bl(0) >~bs(0)>~b6(0)= -1 .  Asymptotically (not shown here), ~b t and ~b2, ~b3 and ~b4, and ~b 5 
and ~b 6 merge pairwise, as is already suggested by (b). However, (c) exhibits $ 1 -  ~b3 for large 
times and K =  2.2815 <Kc=2.2816,  and shows that the sublattices I(1.5) and I(2), though 
exhibiting something like a partial phase locking, do not  lock exactly. Instead we find a 
periodic oscillation with recurrence time T =  113, which is the distance between the two peaks, 
whereas for K =  1 we would have gotten T = 4.7. 
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cf. Fig. 4. Moreover, in numerical simulations it turns out that asymptoti- 
cally, as t--* oe, all phases ~0i(t) on a single sublattice I(~o) approach the 
same limit q~(o); t). Hence we end up with a reduced dynamics 

(o(~o) = A(co)-  K ~ p(co') sin[q~(~o)- ~0(co')] (46) 

obeying the exact sum rule 

dt ~ p(co) (p(co) = 0 (47) 

In view of the Lyapunov function (10) the reduction is easily understood. 
Though K is less than Kc and thus a stationary point of ~ cannot be 
found, the ferromagnetic interaction is at least minimized on the sublattices, 
if there the spins are parallel, i.e., ~0~(t)= ~o(co; t) for all ieI(~o). So it is fair 
to call this a sublattice phase locking. The "minimizing path" itself depends 
on the distribution of the co's. Moreover, since the "partial" phase locking 
of the sublattices that in principle could lock is not an exact one, a rigorous 
but simple description of the system's behavior for K<K~ is hard to 
imagine--except for (46). 

7. D I S C U S S I O N :  C R I T I C A L I T Y  A N D  U N I V E R S A L I T Y  

It may be well to contrast the present results with those obtained for 
more "generic" models (z 13) that have an absolutely continuous frequency 
distribution with a symmetric and one-humped density function, such as 
the Gaussian and the Lorentzian, and ask whether their behavior is truly 
generic. In this type of model one has, (3'12) as K decreases from infinity, two 
transitions: one at Kc where the random field takes over partially in that 
the system is only partially phase locked, and another one at Kpc < Kc 
where also the partially locked state disappears. For K <  Kpc the oscillators 
behave truly incoherently. Partial phase locking means that oscillators with 
frequencies near the center of the distribution remain locked, whereas 
outlying oscillators are desynchronized. In passing we note that a uniform 
distribution on a bounded interval has/(pc = Kc. 

If partial locking were generic, a discrete frequency distribution would 
show a similar behavior. For example, let us return to the system of the 
previous section (Fig. 4) that has three frequencies, coi= 1.5, 2, and4. 
Without co i = 4, the system would phase lock for K >  0.5 and we therefore 
expect that, if the partial-locking behavior were generic, then "for K =  
2.2815 < K,, = 2.2816 the sublattices belonging to coi = 1.5 and 2, which are 
also nearest to (co)=2 .5 ,  would lock as well. As one sees in Fig. 4c, they 
do not. We have verified that they lock nowhere below K~. 
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Even more can be said, however. One might object that the underlying 
distribution of Fig. 4 is asymmetric and that partial locking is to be expected 
for a symmetric distribution. To verify this we have studied the dynamics 
of a system with a symmetric distribution consisting of four frequencies. 
We have simply added a fourth co = -0.5 to the already existing three of 
Fig. 4. Then ( o ) ) =  1.75 and K~=3.4748, as follows from the fixed-point 
equation (22). Figure 5a with K =  3.4747 < Kc= 3.4748 shows that, for a 
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Fig. 5. (a) Phase difference (~b 1 -~3) between two oscillators near the center of a symmetric, 
discrete distribution as a function of time. They were taken out of a population of eight 
oscillators ( N = 8 )  with 0)1=(D2=2, 093=o)4=1.5 , (.05=(.06=4, and c07=O)s=-0 .5 .  The 
initial conditions are as in Fig. 4b. Furthermore, K =  3.4747 < Kc= 3.4748. The recurrence 
time T is about 231. It is plain that the sublattices 1(1.5) and 1(2) do not lock, even though 
their frequencies are neat the center (~o) = 1.75, K is only slightly below Kc, and, between the 
peaks, the system does look "partially phase locked." (b )To  verify that the dependence of T 
upon ( K c -  K) has a first-order character, we have plotted l n [ I / l n ( T / T o )  ] against ln(K e - K ) ,  
where Kc=  3.474828 and T O = 2.2. The open circles represent numerically obtained data 
points. A pure power law behavior fi l a  T =  T o ( K  c - K )  x for some x < 0 does not occur. The 
first-order dependence is in agreement with the nature of the transition as K approaches K c 
from above; cf. Fig. 2 and the discussion below (22). 
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discrete distribution, the absence of partial locking below Kc is quite 
universal. Here, too, we have verified that the two sublattices 1(1.5) and 
I(2) associated with frequencies near the center of the distribution lock 
nowhere below Kc. One may wonder, though, how the system "feels" that 
K is approaching Kc from below. To this end we have studied the 
recurrence time T of the asymptotic phase difference between 1(1.5) and 
I(2) as a function of (Kc - K); cf. Fig. 5b. As K approaches Kc from below, 
the amplitude of the phase difference does not vary, but the recurrence time 
T does: it diverges to infinity. As in afirst-order phase transition, we do not 
find a pure power law behavior. For K > K c  the phase difference is 
asymptotically fixed, i.e., T =  ~ .  

There are apparently classes of oscillator models with different 
"generic" behavior. That is, there are different universality classes. The 
absolutely continuous distributions ~2-13) belong to one class and the dis- 
crete distributions to another one. The former give rise to two transitions 
at Kc and /,;pc, whereas the latter appear to have only a single transition 
at K~. w e  now want to discuss the character of the ground states in more 
detail. 

It is the very existence of a Lyapunov function ~ that allows a physi- 
cally transparent treatment of a phase-locked state of the Kuramoto model 
as a ground state. In fact, the argument holds for any equivalent model 
with finite-range interactions. (9'22 24) We first list some interesting data 
concerning asymptotic states and their dependence upon the dimension in 
models with finite-range interactions. For example, Sakaguchi eta/. (23'24) 

have studied the Gaussian case and numerically obtained the result that no 
extensive synchronized clusters exist for dimensions d~< 2, whereas they 
state that for 2 < d~<4 the order parameter r vanishes, even though they 
cannot exclude that extensive synchronized clusters do exist. In their own 
words, (24) the phase difference becomes indefinitely large with distance if 
d ~< 4. The underlying physics of these and similar results is a characteriza- 
tion of the ground states of the underlying spin model. 

The Lyapunov function ~ has two constituents, an X Y  ferromagnet 
with coupling strength K > 0  and a random field (coi - (co)) ;  cf. (10). In 
the case of the Kuramoto model, the X Y  ferromagnet dominates for 
K >  Kc, the sublattices have a homogeneous phase, and their phases lock 
with respect to each other. The larger is I09- (co)l, the larger is the phase 
shift. For K <  Kc, the sublattices still have a homogeneous phase as t ~ 
(sublattice phase locking), but J(r has no stationary point and the "mini- 
mizing path" is determined by the distribution of the co's, as is brought out 
by (46). 

For a d-dimensional oscillator model with ferromagnetic nearest- 
neighbor interactions, the interpretation of the numerical w o r k  (9'23'24) is 
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more complicated. Due to results of Aizenman and Wehr, (25) we expect no 
long-range order in an X Y  ferromagnet with random field for dimensions 
d~< 4. Its exact ground states are not known yet, but it may well be that 
their character for d <~ 2 is different from that for 2 < d ~< 4 in that for d ~< 2, 
ground states more or less follow the random field, whereas in higher 
dimensions, large "magnetized" clusters or blobs, each associated with a 
specific frequency, occur--as is also suggested by the numerics. (9'23'24) A 
large-deviation argument of Strogatz and Mirollo (9) shows that, if these 
clusters are to be bulky, i.e., nonfractal, then they all have to be 
finite--except for the one which is associated with <c0>. That is, as these 
authors say, extensive clusters of synchronized oscillators would have to be 
spongelike, except for one. 

Though interactions more general than the ferromagnetic one and the 
addition of white noise can be treated in a similar vein, we have refrained 
from doing so here. A short comment on oscillator models for neural 
networks may be in order, though. 

The model (1) with Hebbian couplings ~ la 

J/J = N - 1  2 ~ /~/~ (48) i j 
/1 

for 1 ~</~ ~< q random patterns ,({";i 1 ~< i ~< N) has been used (26) to elegantly 
describe coherent oscillations which have been found in the visual cor- 
tex. (27'28) The dynamics of a neuron is taken into account by a single phase 
~b; and we can say the neuron fires if, for instance, ~bi~0. In a network (26) 
neurons are to communicate via Jij sin(~bi-~bj). One now may ask: How 
good is such a description? More precisely, is there any cognitive meaning 
in classifying these "neurons" according to the sublattice I(a~) they belong 
to, and is a collection of spiking neurons really equivalent (in some sense) 
to a set of nonlinear oscillators fi la (1)? 

According to Hebb, (29) the synapses, not theneurons themselves, store 
the information. This is brought out by (48). The neurons "only" interpret 
the signals mediated by the synapses. By itself, a neuron is a threshold 
device and its activity is an all-or-none process, whereas the oscillators ~ la 
(1) are just the opposite. They feel each other all the time, whereas real 
neurons notice each other only if and when they spike. So, in contrast to the 
above phase description, both the neuron's input and its output are 
all-or-none phenomena. Though here, too, we can obtain phase locking, 
the consequences for data processing in a system of spiking neurons are of 
a different nature. For instance, (3~ pattern segmentation works much 
better. In summary, the Kuramoto model offers a vast playing ground to 
test locking phenomena, but its relevance to practical problems should not 
be overestimated. 
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